Weierstrass semi-rational expansion method and new doubly periodic solutions of the generalized Hirota-Satsuma coupled KdV system
نویسندگان
چکیده
In the paper, with the aid of symbolic computation, we investigate the generalized Hirota–Satsuma coupled KdV system via our Weierstrass semi-rational expansion method presented recently using the rational expansion of Weierstrass elliptic function and its first-order derivative. As a consequence, three families of newWeierstrass elliptic function solutions via Weierstrass elliptic function }(n;g2,g3) and its first-order derivative } (n;g2,g3). Moreover, the corresponding new Jacobi elliptic function solutions and solitary wave solutions are also presented, and when n ! 1, these solitary wave solutions approach to some constants. 2005 Elsevier Inc. All rights reserved.
منابع مشابه
The Investigation of New Solutions to Two Coupled Nonlinear Wave Equations Via a Weierstrass Semi-Rational Expansion Method
In this paper a new Weierstrass semi-rational expansion method is developed via the Weierstrass elliptic function ℘(ξ; g2, g3). With the aid of Maple, we choose the coupled water wave equation and the generalized Hirota-Satsuma coupled KdV equation to illustrate the method. As a consequence, it is shown that the method is powerful to obtain many types of new doubly periodic solutions in terms o...
متن کاملApplications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملNew explicit exact solutions for the generalized coupled Hirota-Satsuma KdV system
In this paper, we study the generalized coupled Hirota–Satsuma KdV system by using the two new improved projective Riccati equations method. As a result, many explicit exact solutions, which contain new solitary wave solutions, periodic wave solutions and combined formal solitary wave solutions and combined formal periodic wave solutions are obtained. c © 2007 Published by Elsevier Ltd
متن کاملThe Weierstrass elliptic function expansion method and its applications in nonlinear wave equations
In this paper, based on the close relationship between the Weierstrass elliptic function ℘(ξ; g2, g3)(g2, g3, invariants) and nonlinear ordinary differential equation, a Weierstrass elliptic function expansion method is developed in terms of the Weierstrass elliptic function instead of many Jacobi elliptic functions. The mechanism is constructive and can be carried out in computer with the aid ...
متن کاملSoliton Solutions of the Time Fractional Generalized Hirota-satsuma Coupled KdV System
In this present study, the exact traveling wave solutions to the time fractional generalized Hirota-Satsuma coupled KdV system are studied by using the direct algebraic method. The exact and complex solutions obtained during the present investigation are new, whereas literature survey has revealed generalizations of solutions. The solutions obtained during the present work demonstrate the fact ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied Mathematics and Computation
دوره 177 شماره
صفحات -
تاریخ انتشار 2006